On determinants and permanents of minimally 1-factorable cubic bipartite graphs

نویسنده

  • D. Labbate
چکیده

A minimally 1-factorable cubic bigraph is a graph in which every 1-factor lies in precisely one 1-factorization. The author investigates determinants and permanents of such graphs and, in particular, proves that the determinant of any minimally 1-factorable cubic bigraph of girth 4 is 0.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Edge-Decomposition of Cubic Graphs into Copies of the Double-Star with Four Edges‎

‎A tree containing exactly two non-pendant vertices is called a double-star‎. ‎Let $k_1$ and $k_2$ be two positive integers‎. ‎The double-star with degree sequence $(k_1+1‎, ‎k_2+1‎, ‎1‎, ‎ldots‎, ‎1)$ is denoted by $S_{k_1‎, ‎k_2}$‎. ‎It is known that a cubic graph has an $S_{1,1}$-decomposition if and only if it contains a perfect matching‎. ‎In this paper‎, ‎we study the $S_{1,2}$-decomposit...

متن کامل

On the Fibonacci and Lucas p-numbers, their sums, families of bipartite graphs and permanents of certain matrices

In this paper we consider certain generalizations of the well-known Fibonacci and Lucas numbers, the generalized Fibonacci and Lucas p-numbers. We give relationships between the generalized Fibonacci p-numbers, Fp(n), and their sums, Pn i1⁄41F pðiÞ, and the 1-factors of a class of bipartite graphs. Further we determine certain matrices whose permanents generate the Lucas p-numbers and their sum...

متن کامل

Recent Excluded Minor Theorems for Graphs

A graph is a minor of another if the first can be obtained from a subgraph of the second by contracting edges. An excluded minor theorem describes the structure of graphs with no minor isomorphic to a prescribed set of graphs. Splitter theorems are tools for proving excluded minor theorems. We discuss splitter theorems for internally 4-connected graphs and for cyclically 5-connected cubic graph...

متن کامل

On the Number of 1-factors of Bipartite Graphs

Abstract: In this paper, we investigated relationships between the Fibonacci, Lucas, Padovan numbers and 1-factors of some bipartite graphs with upper Hessenberg adjacency matrix. We calculated permanent of these upper Hessenberg matrices by contraction method and show that their permanents are equal to elements of the Fibonacci, Lucas and Padovan numbers. At the end of the paper, we give some ...

متن کامل

A new Description of Perfectly One-factorable Cubic Graphs

A perfectly one-factorable (P1F) regular graph is a graph admitting a partition of the edge-set into one-factors such that the union of any two of them is a Hamiltonian cycle. The case of cubic graphs is treated. The existence of a P1F cubic graph is guaranteed for each admissible value of the number of vertices. A description of this class was obtained by Kotzig in 1962. It is the purpose of t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001